
Many slides here were adapted from Brown CSCI 1430



Famous tale in 
computer vision

• Once, a CMU graduate student asked the 
famous computer vision scientist Takeo Kanade: 
"What are the three most important problems in 
computer vision?" 

• Takeo replied: "Correspondence, 
correspondence, correspondence!"



Visual Correspondence acrossviews

Matching points, patches, edges, or regions across images.
• Sparseor local correspondence (pickingsome“keypoints”)
• Dense correspondence (at every pixel)

≈

Hays



Fundamental to Applications

• Image alignment
• 3Dreconstruction
• Motion tracking (robots, drones, AR)
• Indexing and database retrieval
• Object recognition

Hays



Example application: Panorama stitching

We have two images –
how do we estimate how to overlay them?



Local features: main components

1) Detection:
Find a set of distinctive key points.

2) Description:
Extract feature descriptor around
each interest point as vector.

3) Matching:
Compute distance between feature
vectors to find correspondence.

d (x1, x 2 ) <T
K. Grauman, B. Leibe

x =[x(1) ,… , x(1) ]
1 1 d

x =[x(2) ,… , x(2) ]
2 1 d

1x

x2



Goal: Distinctiveness

We want to be able to reliably determine which 
point goes with which.

?

Kristen Grauman

May be difficult in structured environments 
with repeated elements



Goal: Repeatability
We want to detect (at least some of) 

the same points in both images.

With these points, there’s no chance to find true matches!

Kristen Grauman

Under geometric and 
photometric variations.

e.g., rotation e.g., brightness



Example: Object Detection

Finding distinctive and repeatable feature points can be difficult when
we want our features to be invariant to large transformations:
- geometric variation (translation, rotation, scale, perspective)
- appearance variation (reflectance, illumination)

Keypoint Descriptors James Hays



Goal: Compactness and Efficiency

We want the representation to be as small and 
as fast as possible

– Much smaller than a whole image

Sometimes, we’d like to run the detection 
procedure independently per image

- Match just the compact descriptors for speed.

- Difficult! We don’t get to see ‘the other image’ at 
match time, e.g., object detection.

Kristen Grauman



Characteristics of good features

Distinctiveness
Each feature can be uniquely identified

Repeatability
The same feature can be found in several images despite differences:
- geometrically (translation, rotation, scale, perspective)
- photometrically (reflectance, illumination)

Compactness and efficiency
Many fewer features than image pixels; run independently per image

Kristen Grauman



Local features: main components
1) Detection:

Find a set of distinctive key points.

2) Description:
Extract feature descriptor around
each interest point as vector.

3) Matching:
Compute distance between feature
vectors to find correspondence.



Detection: Basic Idea

We do not know which other image locations the
feature will end up being matched against …

But can compute how stable a location is in appearance 
with respect to small variations in its position

Something that “meaningfully stands out”!

Strategy: Compare image patch against
local neighbors

A. Efros



Detection: Basic Idea

Recognize corners by looking at small window.

We want a window shift in any direction to give
a large change in intensity.

“Edge”:
no change 
along the edge 
direction

“Corner”: 
significant 
change in all 
directions

“Flat” region:
no change in
all directions

A. Efros



Finding Corners

• Key property: in the region around a corner, 
image gradient has two or more dominant 
directions

• Corners are repeatable and distinctive

C.Harris and M.Stephens. "A Combined Corner and Edge Detector.“
Proceedings of the 4th Alvey Vision Conference: pages 147--151.

http://www.csse.uwa.edu.au/~pk/research/matlabfns/Spatial/Docs/Harris/A_Combined_Corner_and_Edge_Detector.pdf


Corner Detection by Auto-correlation

IntensityShifted 
intensity

Window  
function

Change in appearance of window w(x,y) for shift [u,v]:

E(u,v) =∑w(x, y)[I (x+u, y +v)-I (x, y)]2
x, y

orWindow function w(x,y) =

Gaussian
Source: R. Szeliski

1 in window, 0 outside

Also called ‘sum of squared differences’



E(u,v) =∑w(x, y)[I (x+u, y +v)-I (x, y)]2
x, y

I(x, y)
E(u, v)

E(0,0)

w(x, y)

Change in appearance of window w(x,y) for shift [u,v]:

Corner Detection by Auto-correlation



E(u,v) =∑w(x, y)[I (x+u, y +v)-I (x, y)]2
x, y

Change in appearance of window w(x,y) for shift [u,v]:

I(x, y)
E(u, v)

E(3,2)

w(x, y)

Corner Detection by Auto-correlation



Corner Detection by Auto-correlation

E(u,v) =∑w(x, y)[I (x+u, y +v)-I (x, y)]2
x, y

We want to discover how E behaves for small shifts
(corner = function value change fast w.r.t small shifts)

But this is very slow to compute naively. 
O(window_width2 * shift_range2 * image_width2)

O( 112 * 112 * 6002 ) = 5.2 billion of these 14.6k 
ops per image pixel

Change in appearance of window w(x,y) for shift [u,v]:



Corner Detection by Auto-correlation

E(u,v) =∑w(x, y)[I (x+u, y +v)-I (x, y)]2
x, y

….But we know the response in E that we are looking for – strong peak!

• E needs to “change” fast w.r.t. u & v

• (from u = 0, v = 0)

Change in appearance of window w(x,y) for shift [u,v]:



Recall: Taylor series expansion

A function f can be represented by an infinite series 
of its derivatives at a single point a:

Approximation of
f(x) = ex 

centered at f(0)

Wikipedia

As we care about window 
centered, we set a = 0 
(MacLaurin series)



Corner Detection: Mathematics (Simplified)

(We ignore W
here for simplicity)

(Why first-order is
good enough?)



Corners as distinctive interest points

James Hays



Corners as distinctive interest points

James Hays

Reminder/Refresher:

• Our goal is to find (x,y) likely at corner. (u,v) denotes a small neighborhood near (x,y)
• E(u,v) is evaluated at each (x,y). Its “parameter” depends on (x,y), e.g., M
• For each (x,y), we want to find “extreme” values for E(u,v) -- now reducing to analyzingM
• M encodes the “variation” level of E(u,v) in the small (u,v) neighborhood – how to decode?



Let’s go back to our goal: corner detection

• For detecting “cornerness”:
• Do we care about the change orientation? No
• Do we care about the change “steepness”? Yes, that is “all we need”

• So, looking at the M approximation now, what we really want?
• What if I2x, I2y , Ix Iy are all small? No variations -> flat area
• What if only I2x is large? Only x-direction has large variations -> Edge
• How about only large I2y , or Ix Iy? Same thing (edge)
• Then, how about letting I2x, I2y , Ix Iy all be large?

• Sufficient, but not necessary…
• The missing key: Rotation Invariance



Eigenvalue Analysis (your old friend: PCA)

• Goal: Describe the “overall intensity variations” in the window, regardless of rotation!
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… by eigenvalue analysis

l1, l2 – eigenvalues of M

What PCA can tell us about the overall “variations”
- Eigenvectors told us the 1st/2nd/3rd … major directions of change

- Correspondingly, eigenvalues capture “change rate” along each of those directions





Categorizing image points using M eigenvalues 



Categorizing image points using M eigenvalues 

“Corner”  
C > 0

“Edge”  
C < 0

“Edge”
C < 0

|C| small 

“Flat”
region

λ1

λ2Cornerness score:
𝐶 = 𝜆1𝜆2 − 𝛼(𝜆1 + 𝜆2)2

α: some small constant (~0.04 to 0.06)



Categorizing image points using M eigenvalues 

“Corner”  
C > 0

“Edge”  
C < 0

“Edge”
C < 0

|C| small 

“Flat”
region

C =det(M )-α Tr2(M )
Avoids explicit eigenvalue computation!

(many fast algorithms to directly estimate det/Tr)

Trace:

λ1

λ2

Remember your linear algebra:

Determinant:
(diagonal matrices)

Cornerness score:
𝐶 = 𝜆1𝜆2 − 𝛼(𝜆1 + 𝜆2)2

α: some constant (~0.04 to 0.06)



This is the "notorious” Harris corner detector!

1) Compute M matrix for each window to recover the
cornerness score 𝐶.

Note: We can find M purely from the per-pixel image derivatives!

2) Threshold to find pixels which give large corner 
response (𝐶 > threshold).

3) Find the local maxima pixels, i.e.,
non-maximal suppression.

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

http://www.bmva.org/bmvc/1988/avc-88-023.pdf




Harris Detector: Steps



Harris Detector: Steps
Compute corner response 𝐶



Harris Detector: Steps
Find points with large corner response: 𝐶 > threshold



Harris Detector: Steps
Take only the points of local maxima of 𝐶



Harris Detector: Steps



Harris Corners –Why socomplicated?

• Can’t we just check for regions with lots of gradients in
the x and y directions (or any specific)?
– No! Adiagonal line or alike would satisfy that criteria

Current 
Window Current

Window



Invariance and covariance
Are locations invariant to photometric transformations 
and covariant to geometric transformations?

• Invariance: image is transformed and corner locations do not change
• Covariance: if we have two transformed versions of the same image, 

features should be detected in corresponding locations



Affine intensity change

R
Threshold

x (image coordinate) x (image coordinate)

R

I → a I + b

•Only derivatives are used => 
invariance to intensity shift I → I + b

• Intensity scaling: I → a I

Partially invariant to affine intensity change
JamesHays



Image translation

• Derivatives and window function are shift-invariant.

Corner location is covariant w.r.t. translation

JamesHays



Image rotation

Second moment ellipse rotates but its shape 
(i.e., eigenvalues) remains the same.

Corner location is covariant w.r.t. rotation

JamesHays



Scaling

All points will 
be incorrectly 
classified as 
edges

Corner

Corner location is not covariant to scaling!
JamesHays



Fixing the scale ambiguity: “Scale Space”
• Given a keypoint in each image of an image pair, we want to determine 

whether their surrounding image neighborhoods contain the same 
structure up to an unknown scale factor

• We evaluate a scale-dependent signature function on the keypoint
neighborhood and plot the resulting value as a function of the scale. 

• If the two keypoints correspond to the same structure, then their signature 
functions will take similar “overall shapes”

• … and their corresponding “just right” neighborhood sizes can be determined by 
searching for scale-space extrema of the signature function.

• Effectively, this procedure builds up a scale space 



Harris-Laplacedetector [Mikolajczyk ‘01]

• Step 1. Build the
Laplacian Pyramid of
one image



Harris-Laplacedetector [Mikolajczyk ‘01]

• Step 1. Build the
Laplacian Pyramid of
one image

• Step 2. Run the
Harris detector to
compute interest 
points at each scale



Harris-Laplacedetector [Mikolajczyk ‘01]

• Step 1. Build the
Laplacian Pyramid of
one image

• Step 2. Run the
Harris detector to
compute interest 
points at each scale

• Step 3. Non-maximal
suppression, not only
at each scale, but also
at adjacent scales



Harris-Laplacedetector [Mikolajczyk ‘01]

• A scale-invariant detector!
• Automatically search for the right scale to detect corners, by “multi-scaling then max-pooling”



A Longer List of Local Keypoint Detectors…

Tuytelaars Mikolajczyk 2008

• It is always of interest to collect more points with more detectors, for more possible matches
• Needconsider location preciseness, variation robustness, and flexibility in region shapes
• Best choice often application dependent

– Harris/Harris-Laplace work well for many natural image categories
– MSERworks well for buildings and printed things
– Although no “silver bullet”, all detectors/descriptorsshown here work well in general



Local features:main components

1) Detection:
Find a set of distinctive key points.

2) Description:
Extract feature descriptor around each
interest point asvector.

3) Matching:
Compute distance between feature
vectors to find correspondence.

d (x1, x 2 ) <T

x =[x(1) ,… , x(1) ]
1 1 d

x =[x(2) ,… , x(2) ]
2 1 d

1x

x2

K. Grauman, B. Leibe



Image patch

Just use the pixel values of the patch

Perfectly fine if geometry and appearance is unchanged (a.k.a. template matching)

What are the problems?
How can you be less sensitive to absolute intensity values? 

( )
1 2 3

4 5 6

7 8 9

1 2 3 4 5 6 7 8 9

vector of intensity values



Image gradients

Use pixel differences

( )
1 2 3

4 5 6

7 8 9

- + + - - +

vector of x derivatives

What are the problems?
How can you be less sensitive to deformations? 

Feature is invariant to absolute intensity values



Image Representations: Histograms

Global histogram to represent  
distribution of features

– How ‘well exposed’ a photo is

What about a local histogram per
detected point?

Images from Dave Kauchak

Motivation: We want some 
sensitivity to spatial layout, but 
not too much, so blocks of 
histograms give us that



Image Representations: Histograms

• Joint histogram
– Requires lotsof data
– Lossof resolution to  

avoid empty bins

Marginal histogram

Images from Dave Kauchak

• Requires independent features
• More data/bin than joint histogram
• The definition of feature can vary…

Histogram: Probability or count of data in each bin



Image Representations: Histograms

Clustering

Images from Dave Kauchak

Use the same cluster centers for all images
… so two different images’ histograms can be “compared” (using what metric?)



Computing histogram distance

Cars found by color histogram matching using chi-squared JamesHays



Histograms: Implementation issues

Few Bins
Need less data 
Coarser representation

JamesHays

Many Bins
Need more data 
Finer representation

• Quantization
– Grids: fast but applicable only with few dimensions
– Clustering: slower but can quantize data in higher dimensions

• Matching
– Histogram intersection or Euclidean may be faster
– Chi-squared often worksbetter
– Earth mover’sdistance is good for when nearby bins

represent similar values



Intensity/Color histogram

Invariant to changes in scale and rotation

What are the problems?
How can you be more sensitive to spatial layout? 

colors

Count the colors in the image using a histogram



Spatial histograms

What are the problems?
How can you be completely invariant to rotation? 

Compute histograms over spatial ‘cells’

Retains rough spatial layout

Some invariance to deformations



• FromColor toTexture/Keypoints
• Histogramsof orientedgradients (HOG)
• ScaleInvariant FeatureTransform(SIFT)

– Extremelypopular (63k citationsin 2021)

SIFT– Lowe IJCV2004

Forwhat thingsmightwecomputehistograms?

JamesHays

IMHO, one of the
most elegant

designs ever in CV



SIFT (Scale Invariant 
Feature Transform)

SIFT describes both a detector and descriptor

1. Multi-scale extrema detection

2. Keypoint localization

3. Orientation assignment

4. Keypoint descriptor



1. Multi-scale extrema detection
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Scale-space extrema

Selected if larger 
than all 26 
neighbors

Difference of Gaussian (DoG)
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2. Keypoint localization (why this step?)



3. Orientation assignment

For a keypoint, L is the Gaussian-smoothed image at its selected scale,

Detection process returns

location scale orientation

x-derivative y-derivative



4. Keypoint descriptor
At this moment, each keypoint has 
{location, scale, orientation}…
• Use local image gradients at selected 

scale and rotation to describe each 
keypoint region.



Adding more invariances to SIFT

Rotation Invariance:
• The feature vector uses gradient orientations. So if you rotate the image, everything changes!
• SIFT adopts “relative rotation”: the keypoint’s own rotation is subtracted from each 

orientation. Thus each gradient orientation is relative to the keypoint’s orientation.

Illumination Invariance:
• All keypoints’ 128-dim vector are normalized to 1
• Sometimes we have ”outlier illumination” …

• Practically, after normalization, we clamp all gradients > 0.2, then renormalize to [0,1]

SIFT achieves an extremely elegant and robust balance between global layout
(histogram) versus local feature (full gradient), discriminativeness versus resilience





Review: Local Descriptors

• Most features can be thought of as templates,  histograms
(counts), or combinations

• The ideal descriptor should be
– Robust and Distinctive
– Compact and Efficient

• Most available descriptors focus on  
edge/gradient information
– Capture texture information
– Color rarely used

K. Grauman, B. Leibe



Local features: main components

1) Detection:
Find a set of distinctive key points.

2) Description:
Extract feature descriptor around each
interest point asvector.

3) Matching:
Compute distance between feature
vectors to find correspondence.

x ! [x(1) ,… , x(1) ]
1 1 d

x ! [x(2) ,… , x(2) ]
2 1 d

1x

x2

K. Grauman, B. Leibe



Distance: 0.34, 0.30, 0.40
Distance: 0.61, 1.22

Ok, now we
have local
features…

But how similar
can the two
features be
called “match”?



What to Consider in the Design of Feature Matching

• Two images, I1 and I2

• Two sets X1 and X2of feature points

• Distance, bijective/injective/surjective, noise,  confidence,
computational complexity, generality…

1 1 1 d– Each feature point x has a descriptor x ! [x(1) ,… , x(1) ]



Euclidean distance vs. Cosine Similarity
• Euclidean distance:

• Cosine similarity:

Wikipedia



Feature Matching
• Criteria 1:

– Compute distance in feature space, e.g., Euclidean 
distance between 128-dim SIFTdescriptors

– Match point to lowest distance (nearest neighbor)

• Problems:
– Does everything have a match?



Feature Matching
• Criteria 2:

– Compute distance in feature space, e.g., Euclidean 
distance between 128-dim SIFTdescriptors

– Match point to lowest distance (nearest neighbor)
– Ignore anything higher than threshold (no match!)

• Problems:
– Threshold is hard to pick
– Non-distinctive features could have lots of close 

matches, only one of which is correct



Nearest Neighbor Distance Ratio

Compare distance of closest (NN1) and second-
closest (NN2) feature vector neighbor.

𝑁𝑁2

𝑁𝑁1
ratio will be ≈ 1 ->matches too close.

𝑁𝑁2

• If NN1 ≈NN2,

• AsNN1<<NN2, ratio 𝑁𝑁1 tends to 0.

Sorting by this ratio puts matches in order of confidence. 
Threshold ratio – but how to choose?
• depends on your application’s view on the trade-off between the number of false 

positives and true positives! You need to tune…



Visual Similarity is still/forever
an OPEN problem




